Spectral Approach to Duality in Nonconvex Global Optimization∗

نویسنده

  • ALEXEY S. MATVEEV
چکیده

A nonconvex problem of constrained optimization is analyzed in terms of its ordinary Lagrangian function. New sufficient conditions are obtained for the duality gap to vanish. Among them, the main condition is that the objective and constraint functions be the sums of convex functionals and nonconvex quadratic forms with certain specific spectral properties. The proofs are related to extensions of the classic Toeplitz–Hausdorff theorem, which states that a continuous quadratic mapping (y1, y2) = [B1(z), B2(z)] from a complex Hilbert space H = {z} into R = {(y1, y2)} transforms the unit sphere |z| = 1 into a convex set. The extensions deal with a quadratic mapping [B1(z), . . . , Bk(z)] from a real Hilbert space into R k with k being arbitrary. Applications to linear-quadratic optimal control theory are considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality

‎In this paper‎, ‎we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints‎. ‎We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions‎. ‎We also fo...

متن کامل

Canonical Duality Theory: Connections between nonconvex mechanics and global optimization

This paper presents a comprehensive review and some new developments on canonical duality theory for nonconvex systems. Based on a tri-canonical form for quadratic minimization problems, an insightful relation between canonical dual transformations and nonlinear (or extended) Lagrange multiplier methods is presented. Connections between complementary variational principles in nonconvex mechanic...

متن کامل

Solutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality

Abstract This paper presents a canonical duality theory for solving a general nonconvex 1 quadratic minimization problem with nonconvex constraints. By using the canonical dual 2 transformation developed by the first author, the nonconvex primal problem can be con3 verted into a canonical dual problem with zero duality gap. A general analytical solution 4 form is obtained. Both global and local...

متن کامل

A geometric framework for nonconvex optimization duality using augmented lagrangian functions

We provide a unifying geometric framework for the analysis of general classes of duality schemes and penalty methods for nonconvex constrained optimization problems. We present a separation result for nonconvex sets via general concave surfaces. We use this separation result to provide necessary and sufficient conditions for establishing strong duality between geometric primal and dual problems...

متن کامل

Global solutions to fractional programming problem with ratio of nonconvex functions

This paper presents a canonical dual approach for minimizing a sum of quadratic function and a ratio of nonconvex functions in R. By introducing a parameter, the problem is first equivalently reformed as a nonconvex polynomial minimization with elliptic constraint. It is proved that under certain conditions, the canonical dual is a concave maximization problem in R that exhibits no duality gap....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998